今天看啥  ›  专栏  ›  DASOU

2025年还在用LSTM的也是神人了……

DASOU  · 公众号  · 科技创业 科技自媒体  · 2025-06-11 11:17
    

主要观点总结

本文主要探讨了LSTM在多个领域的应用及创新点,包括CVPR、AAAI、ACL等期刊发表的论文内容。文章还介绍了基于LSTM的新计算机视觉架构ViL、基于LSTM-Transformer神经网络的时间序列预测模型在矿山涌水量预测中的应用,以及锂离子电池荷电状态估计的LSTM-RNN和自适应扩展卡尔曼滤波器在线估计算法。此外,还有VMRNN模型在时空预测任务中的应用和轴承故障诊断的新方法等。

关键观点总结

关键观点1: LSTM在各种期刊上的论文表现

包括CVPR、AAAI、ACL等期刊都有LSTM相关的论文发表,涉及领域包括医学、工业、金融等,并且取得了显著的效果。

关键观点2: 基于LSTM的新计算机视觉架构ViL介绍

介绍了一种新的计算机视觉架构ViL,它是基于扩展的长短期记忆网络构建的,能有效处理非序列化的图像输入,并在图像分类、迁移学习和分割任务上表现出色。

关键观点3: LSTM-Transformer神经网络在矿山涌水量预测中的应用

提出了一种基于LSTM-Transformer神经网络的时间序列预测模型,用于预测矿山涌水量。该模型结合了Transformer的自注意力机制和LSTM捕捉长期依赖性的能力,以提高预测精度。

关键观点4: 锂离子电池荷电状态估计的联合算法介绍

提出了一种联合长短期记忆循环神经网络(LSTM-RNN)和自适应扩展卡尔曼滤波器(AEKF)的在线估计算法,用于锂离子电池荷电状态估计。

关键观点5: VMRNN模型在时空预测任务中的应用

介绍了一种新型时空预测模型VMRNN,该模型结合了Vision Mamba模块和LSTM架构,用于高效且准确的时空预测任务。

关键观点6: 基于深度学习的棋手等级分估计方法

提出了一种基于深度学习的方法,直接从国际象棋的棋局走法和用时数据中估计棋手的等级分,该方法结合了卷积神经网络(CNN)和双向长短期记忆网络(LSTM)。

关键观点7: 轴承故障诊断的新方法

提出了一种结合图注意力网络(GAT)和长短期记忆网络(LSTM)的新方法,用于轴承故障诊断。该方法通过将时间序列传感器数据转换为图表示,利用GAT和LSTM提高检测准确性。


文章预览

都2025了,还能用LSTM发论文么?毫无疑问没问题! 这不KI-GAN,便拿下了CVPR,实现了预测误差直降87%的显著效果;模型GRLSTM则中稿AAAI;还有ACL的DW-LSTM;各一区TOP期刊,也不乏其身影…… 主要在于:其特有的门控机制,不仅能保障长序列建模的稳定性,避免梯度消失;还能满足轻量化、实时性、可解释性等垂直场景的需求。在医学、工业、金融等领域,都起着不可替代的作用! 更特别的是,其实现简单,计算效率高,还很容易的与其他技术结合,做模块缝合,非常好涨点出创新。 想发论文的伙伴,可以围绕 LSTM架构改进(与Mamba、Transformer等结合)、动态门控机制设计、并行化改进 等进行。为方便大家研究的进行,我给大家 准备了122种创新思路 ,原文和源码都有! 扫描 下方二维码,回复「 长短改进 」 免费获取 全部论文合集及项目代码 xLSTM as Gen ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览