文章预览
来源:Deephub Imba 本文 共4500字 ,建议阅读 5 分钟 本文将深入剖析PyTorch如何优化GPU内存使用,以及如何通过定制其内部系统机制来充分发挥GPU集群的性能潜力。 在深度学习工程实践中,当训练大型模型或处理大规模数据集时,上述错误信息对许多开发者而言已不陌生。这是众所周知的CUDA out of memory错误——当GPU尝试为张量分配空间而内存不足时发生。这种情况尤为令人沮丧,特别是在已投入大量时间优化模型和代码后遭遇此类问题。 torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 512.00 MiB. GPU 0 has a total capacity of 79.32 GiB of which 401.56 MiB is free. 本文将深入剖析PyTorch如何优化GPU内存使用,以及如何通过定制其内部系统机制来充分发挥GPU集群的性能潜力。 GPU内存管理的关键性 在当代深度学习领域,随着数据集规模呈指数级增长及模型复杂度不断提升
………………………………