文章预览
对于一些知识密集型问题往往需要从多个信息源中提取和整合知识,比如金融,法律等领域。传统 RAG 方法在处理这类知识密集型推理任务时常常力不从心。今天介绍一个来自中科院的新 rag 技术—— structRAG [1] ,它在这方面获得了很不错的突破。 研究人员借鉴了人类处理复杂推理任务时的方式。人类通常不会不同于简单阅读散乱的原始内容,而是会将这些信息信息汇总成结构化知识,再利用这些结构化信息进行思考推理。 StructRAG 通过以下三个过程模拟这一过程: 混合结构路由器(Hybrid structure router)训练 混合结构路由器根据任务需求灵活选择最佳知识结构形式,例如表格、图或算法,确保知识的呈现最大化满足推理需要。例如,当需要比较多家公司的财务数据时,混合结构路由器会优先选择表格这一形式,以便清晰展示数据对比。训练混合结
………………………………