文章预览
基于车载3D LiDAR的几何与语义场景理解深度学习研究 3D LiDAR点云数据在计算机视觉、机器人学和自动驾驶中的场景感知中起着至关重要的作用。涉及3D点云的几何与语义场景理解是推动自动驾驶技术发展的关键。然而,仍然存在许多挑战,特别是在提高这些系统的整体准确性(如分割精度、深度估计精度等)和效率方面。 为了解决与LiDAR任务相关的准确性问题,我们提出了DurLAR,这是首个高保真128通道3D LiDAR数据集,具有全景环境(近红外)和反射率图像。利用DurLAR,超越了先前基准的数据集分辨率,我们着手解决单目深度估计任务。利用这种高分辨率但稀疏的真实场景深度信息,我们提出了一种新型的联合监督/自监督损失函数,大大提高了深度估计的精度。 为了在确保精度的同时提高3D分割的效率,我们提出了一种新颖的管道,采用更小的架构,
………………………………