专栏名称: 机器之心
专业的人工智能媒体和产业服务平台
目录
今天看啥  ›  专栏  ›  机器之心

SFT在帮倒忙?新研究:直接进行强化学习,模型多模态推理上限更高

机器之心  · 公众号  · AI  · 2025-06-01 11:30
    

文章预览

机器之心报道 编辑:张倩 「尽管经过 SFT 的模型可能看起来在进行推理,但它们的行为更接近于模式模仿 —— 一种缺乏泛化推理能力的伪推理形式。」 随着 OpenAI 的 o1/o3 和 Deepseek-R1 等具备强大推理能力的大语言模型相继问世,学界普遍采用「监督微调 + 强化学习」的两阶段训练范式:先通过推理数据进行监督微调(SFT),再通过强化学习(RL)进一步提升性能。这种成功模式启发了研究人员将其优势从纯文本领域拓展到视觉 - 语言大模型(LVLM)领域。 但近日的一项研究成果却给出了一个惊人的发现:「SFT 可能会阻碍学习 —— 经常导致出现伪推理路径,而 RL 则是在促进真正的多模态推理!」 这个发现来自加州大学圣克鲁兹分校和德克萨斯大学达拉斯分校等机构的一个研究团队,他们深入探讨了「SFT+RL」这一经典范式在视觉语言模型开发中的 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览