一个有情怀的公众号。机器学习、自然语言处理、算法等知识集中营、期待与你相遇~
今天看啥  ›  专栏  ›  机器学习算法与自然语言处理

单一作者论文,谷歌提出百万专家Mixture,超越密集前馈、稀疏MoE

机器学习算法与自然语言处理  · 公众号  ·  · 2024-07-11 00:00
    

文章预览

MLNLP 社区是国内外知名的机器学习与自然语言处理社区,受众覆盖国内外NLP硕博生、高校老师以及企业研究人员。 社区的愿景 是促进国内外自然语言处理,机器学习学术界、产业界和广大爱好者之间的交流和进步,特别是初学者同学们的进步。 转载自 | 机器之心 编辑 | 泽南、杜伟 释放进一步扩展 Transformer 的潜力,同时还可以保持计算效率。 标准 Transformer 架构中的前馈(FFW)层会随着隐藏层宽度的增加而导致计算成本和激活内存的线性增加。在大语言模型(LLM)体量不断增大的现在,稀疏混合专家(MoE)架构已成为解决此问题的可行方法,它将模型大小与计算成本分离开来。很多新兴的 MoE 模型都可以实现相同体量之上,更好的性能与更强大的表现。 最近发现的细粒度 MoE 扩展定律表明,更高的粒度可带来更好的性能。然而由于计算和优化方面 ………………………………

原文地址:访问原文地址
快照地址: 访问文章快照
总结与预览地址:访问总结与预览