文章预览
循环神经网络 (Recurrent Neural Networks)是目前非常流行的神经网络模型,在自然语言处理的很多任务中已经展示出卓越的效果。但是在介绍 RNN 的诸多文章中,通常都是介绍 RNN 的使用方法和实战效果,很少有文章会介绍关于该神经网络的训练过程。 循环神经网络是一个在时间上传递的神经网络,网络的深度就是时间的长度。该神经网络是专门用来处理 时间序列 问题的,能够提取时间序列的信息。如果是前向神经网络,每一层的神经元信号只能够向下一层传播,样本的处理在时刻上是独立的。对于循环神经网络而言,神经元在这个时刻的输出可以直接影响下一个时间点的输入,因此该神经网络能够处理时间序列方面的问题。 本文将会从数学的角度展开关于循环神经网
………………………………